Skip to main content
Log in

Methylphenidate and its Isomers

Their Role in the Treatment of Attention-Deficit Hyperactivity Disorder Using a Transdermal Delivery System

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

dl-threo-Methylphenidate is a highly efficacious drug for treating attention-deficit hyperactivity disorder (ADHD) that is currently administered as immediate- or controlled-release and osmotically controlled-released formulations. The drug exists as two enantiomers, d-threo-methylphenidate and l-threo-methylphenidate, with the former having been developed as a medication to treat ADHD in its own right. dl-threo-Methylphenidate undergoes enantioselective metabolism in the liver, which results in marked differences in the plasma concentrations of its isomers, depending on the route of administration and formulation. When dl-threo-methylphenidate is orally administered, the plasma concentrations of d-threo-methylphenidate are higher than those of l-threo-methylphenidate. However, with the recently developed methylphenidate transdermal system (MTS), ‘first-pass’ metabolism is circumvented and, as a consequence, plasma concentrations of d-threo-methylphenidate are consistent with those produced by oral formulations, but the relative concentrations of l-threo-methylphenidate are much higher, i.e. 50–60% of those of d-threo-methylphenidate.

In this article, we review the pharmacokinetics and pharmacology of dl-threo-methylphenidate and its isomers to assess the extent to which their mechanism of action as noradrenaline (norepinephrine) and dopamine reuptake inhibitors is responsible for their efficacy and commonly occurring adverse effects. The major findings are that d-threo-methylphenidate and l-threo-methylphenidate share the same pharmacological profile as the parent racemate, i.e. catecholamine-selective reuptake inhibition with higher potency against dopamine versus noradrenaline reuptake in vivo. However, d-threo-methylphenidate is approximately 10-fold more potent than the l-isomer in this regard.

For these drugs, their abilities not only to ameliorate the behavioural and cognitive dysfunctions in ADHD, but also to induce the common adverse effects of reduced appetite, nausea/vomiting and stomach ache, are almost certainly due to their ability to potentiate noradrenergic and/or dopaminergic function in the central and peripheral nervous systems. The sympathomimetic actions of ADHD drugs on cardiovascular function are currently an issue of concern. Since noradrenaline reuptake inhibition is the likely mediator for the effects of dl-threo-methylphenidate on blood pressure and heart rate, the more potent d-isomer will therefore be predominantly responsible. Motor and vocal tics are the other important adverse event to be considered in the treatment of ADHD. It is now accepted that tics are a frequently occurring behavioural manifestation of ADHD itself and the evidence for or against their exacerbation by treatment with dl-threo-methylphenidate or other stimulants remains highly contradictory.

Focusing on the enantiomers of dl-threo-methylphenidate, it can be concluded that d-threo-methylphenidate, which is the more potent and abundant of the two isomers, is the major contributor of both efficacy and adverse effects, irrespective of the formulation or route of administration of the racemate. Moreover, for the oral, extended-release formulations of dl-threo-methylphenidate, the d-isomer represents the only pharmacologically active moiety when these medications are used in the clinic. With the MTS, plasma concentrations of l-threo-methylphenidate are higher than are achieved using oral formulations, but even in this case, it is likely that the contribution of this enantiomer to the efficacy and adverse effects of the racemate is no greater than 5–10% of the total.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Table I.
Table II.
Table III.
Table IV.
Fig. 3.
Table V.
Fig. 4.

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Taylor E, Sandberg S, Thorley G, et al. The epidemiology of childhood hyperactivity. Maudsley monographs no. 33. Oxford: Oxford University Press, 1991: 93–113

    Google Scholar 

  2. Baumgaertel A, Wolraich ML, Dietrich M. Comparison of diagnostic criteria for attention deficit disorders in a German elementary school sample. J Am Acad Child Adolesc Psychiatry 1995 May; 34(5): 629–38

    Article  PubMed  CAS  Google Scholar 

  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

    Google Scholar 

  4. Wolraich ML, Hannah JN, Pinnock TY, et al. Comparison of diagnostic criteria for attention-deficit hyperactivity disorder in a county-wide sample. J Am Acad Child Adolesc Psychiatry 1996 Mar; 35(3): 319–24

    Article  PubMed  CAS  Google Scholar 

  5. Elia J. Drug treatment for hyperactive children: therapeutic guidelines. Drugs 1993 Nov; 46(5): 863–71

    Article  PubMed  CAS  Google Scholar 

  6. Weiss G, Hechtman L, Milroy T, et al. Psychiatric status of hyperactives as adults: a controlled prospective 15-year follow-up of 63 hyperactive children. J Am Acad Child Psychiatry 1985 Mar; 24(2): 211–20

    Article  PubMed  CAS  Google Scholar 

  7. Mannuzza S, Klein RG, Bessler A, et al. Adult psychiatric status of hyperactive boys grown up. Am J Psychiatry 1998 Apr; 155(4): 493–8

    PubMed  CAS  Google Scholar 

  8. Barkley RA, Fischer M, Edelbrock CS, et al. The adolescent outcome of hyperactive children diagnosed by research criteria: I. An 8-year prospective follow-up study. J Am Acad Child Adolesc Psychiatry 1990 Jul; 29(4): 546–57

    CAS  Google Scholar 

  9. Cohen P, Cohen J, Kasen S, et al. An epidemiological study of disorders in late childhood and adolescence: I. Age- and gender-specific prevalence. J Child Psychol Psychiatry 1993 Sep; 34(6): 851–67

    CAS  Google Scholar 

  10. Biederman J, Faraone SV, Monuteaux MC, et al. Gender effects on attention-deficit/hyperactivity disorder in adults, revisited. Biol Psychiatry 2004 Apr 1; 55(7): 692–700

    Article  PubMed  Google Scholar 

  11. Pelham Jr WE, Walker JL, Sturges J, et al. Comparative effects of methylphenidate on ADD girls and ADD boys. J Am Acad Child Adolesc Psychiatry 1989 Sep; 28(5): 773–6

    Article  PubMed  Google Scholar 

  12. Shaffer D. Attention deficit hyperactivity disorder in adults. Am J Psychiatry 1994 May; 151(5): 633–8

    PubMed  CAS  Google Scholar 

  13. Hart EL, Lahey BB, Loeber R, et al. Developmental change in attention-deficit hyperactivity disorder in boys: a four-year longitudinal study. J Abnorm Child Psychol 1995 Dec; 23(6): 729–49

    Article  PubMed  CAS  Google Scholar 

  14. Gittelman R, Mannuzza S, Shenker R, et al. Hyperactive boys almost grown up: I. Psychiatric status. Arch Gen Psychiatry 1985 Oct; 42(10): 937–47

    Article  CAS  Google Scholar 

  15. Huss M, Lehmkuhl U. Methylphenidate and substance abuse: a review of pharmacology, animal, and clinical studies. J Atten Disord 2002; 6Suppl. 1: S65–71

    PubMed  Google Scholar 

  16. Biederman J. Pharmacotherapy for attention-deficit/hyperactivity disorder (ADHD) decreases the risk for substance abuse: findings from a longitudinal follow-up of youths with and without ADHD. J Clin Psychiatry 2003; 64Suppl. 11: 3–8

    PubMed  CAS  Google Scholar 

  17. Mannuzza S, Klein RG, Bonagura N, et al. Hyperactive boys almost grown up: II. Status of subjects without a mental disorder. Arch Gen Psychiatry 1988 Jan; 45(1): 13–8

    CAS  Google Scholar 

  18. Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002 Nov; 27(5): 699–711

    Article  PubMed  CAS  Google Scholar 

  19. Panizzon L. The preparation of pyridines- and piperidine-arylacetonitriles and the alkylation products of transformations (Pt I). Helv Chim Acta 1944; 27: 1748–56

    Article  CAS  Google Scholar 

  20. Meier R, Gross F, Tripod J. Ritalin, a new synthetic compound with specific central nervous system activity. Klin Wochenschr 1954 May 15; 32(19–20): 445–50

    Article  PubMed  CAS  Google Scholar 

  21. Wax PM. Analeptic use in clinical toxicology: a historical appraisal. J Toxicol Clin Toxicol 1997; 35(2): 203–9

    Article  PubMed  CAS  Google Scholar 

  22. Deutsch HM, Shi Q, Gruszecka-Kowalik E, et al. Synthesis and pharmacology of potential cocaine antagonists: II. Structure-activity relationship studies of aromatic ring-substituted methylphenidate analogs. J Med Chem 1996 Mar 15; 39(6): 1201–9

    Article  PubMed  CAS  Google Scholar 

  23. Challman TD, Lipsky JJ. Methylphenidate: its pharmacology and uses. Mayo Clin Proc 2000 Jul; 75(7): 711–21

    PubMed  CAS  Google Scholar 

  24. Szporny L, Görög P. Investigations into the correlations between monoamine oxidase inhibition and other effects due to methylphenidate and its stereoisomers. Biochem Pharmacol 1961; 8: 263–8

    Article  CAS  Google Scholar 

  25. Faraj BA, Israili ZH, Perel JM, et al. Metabolism and disposition of methylphenidate-14C: studies in man and animals. J Pharmacol Exp Ther 1974 Dec; 191(3): 535–47

    PubMed  CAS  Google Scholar 

  26. Aoyama T, Kotaki H, Iga T. Dose-dependent kinetics of methylphenidate enantiomers after oral administration of racemic methylphenidate to rats. J Pharmacobiodyn 1990 Oct; 13(10): 647–52

    Article  PubMed  CAS  Google Scholar 

  27. Egger H, Bartlett F, Dreyfuss R, et al. Metabolism of methylphenidate in dog and rat. Drug Metab Dispos 1981 Sep–Oct; 9(5): 415–23

    PubMed  CAS  Google Scholar 

  28. National Toxicology Program. NTP toxicology and carcinogenesis studies of methylphenidate hydrochloride (CAS no. 298-59-9) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser 1995 Jul; 439: 1–299

    Google Scholar 

  29. Wargin W, Patrick K, Kilts C, et al. Pharmacokinetics of methylphenidate in man, rat and monkey. J Pharmacol Exp Ther 1983 Aug; 226(2): 382–6

    PubMed  CAS  Google Scholar 

  30. Srinivas NR, Quinn D, Hubbard JW, et al. Stereoselective disposition of methylphenidate in children with attention-deficit disorder. J Pharmacol Exp Ther 1987 Apr; 241(1): 300–6

    PubMed  CAS  Google Scholar 

  31. Hubbard JW, Srinivas NR, Quinn D, et al. Enantioselective aspects of the disposition of dl-threo-methylphenidate after the administration of a sustained-release formulation to children with attention deficit-hyperactivity disorder. J Pharm Sci 1989 Nov; 78(11): 944–7

    Article  PubMed  CAS  Google Scholar 

  32. Aoyama T, Kotaki H, Honda Y, et al. Kinetic analysis of enantiomers of threo-methylphenidate and its metabolite in two healthy subjects after oral administration as determined by a gas chromatographic-mass spectrometric method. J Pharm Sci 1990 Jun; 79(6): 465–9

    Article  PubMed  CAS  Google Scholar 

  33. Aoyama T, Kotaki H, Sasaki T, et al. Non-linear kinetics of threo-methylphenidate enantiomers in a patient with narcolepsy and in healthy volunteers. Eur J Clin Pharmacol 1993; 44(1): 79–84

    Article  PubMed  CAS  Google Scholar 

  34. Chan YP, Swanson JM, Soldin SS, et al. Methylphenidate hydrochloride given with or before breakfast: II. Effects on plasma concentration of methylphenidate and ritalinic acid. Pediatrics 1983 Jul; 72(1): 56–9

    CAS  Google Scholar 

  35. Srinivas NR, Hubbard JW, Korchinski ED, et al. Enantioselective pharmacokinetics of dl-threo-methylphenidate in humans. Pharm Res 1993 Jan; 10(1): 14–21

    Article  PubMed  CAS  Google Scholar 

  36. Hungund BL, Perel JM, Hurwic MJ, et al. Pharmacokinetics of methylphenidate in hyperkinetic children. Br J Clin Pharmacol 1979 Dec; 8(6): 571–6

    Article  PubMed  CAS  Google Scholar 

  37. Srinivas NR, Hubbard JW, Midha KK. Enantioselective gas Chromatographic assay with electron-capture detection for dl-ritalinic acid in plasma. J Chromatogr 1990 Sep 14; 530(2): 327–36

    PubMed  CAS  Google Scholar 

  38. Teo SK, Scheffler MR, Wu A, et al. A single-dose, two-way crossover, bioequivalence study of dexmethylphenidate HCl with and without food in healthy subjects. J Clin Pharmacol 2004 Feb; 44(2): 173–8

    Article  PubMed  CAS  Google Scholar 

  39. Sun Z, Murry DJ, Sanghani SP, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A 1. J Pharmacol Exp Ther 2004 Aug; 310(2): 469–76

    Article  PubMed  CAS  Google Scholar 

  40. Srinivas NR, Hubbard JW, Korchinski ED, et al. Stereoselective urinary pharmacokinetics of dl-threo-methylphenidate and its major metabolite in humans. J Pharm Sci 1992 Aug; 81(8): 747–9

    Article  PubMed  CAS  Google Scholar 

  41. Srinivas NR, Lim HK, Hubbard JW, et al. Evidence that dogs do not model enantioselective pharmacokinetics of dl-methylphenidate in humans. J Pharm Sci 1991 Jul; 80(7): 707–8

    Article  PubMed  CAS  Google Scholar 

  42. Bakhtiar R, Tse FL. Toxicokinetic assessment of methylphenidate (Ritalin [R]) in a 13-week oral (gavage) toxicity study in rats using an enantiomeric liquid chromatography/tandem mass spectrometry assay. Rapid Commun Mass Spectrom 2003; 17(18): 2160–2

    Article  PubMed  CAS  Google Scholar 

  43. Teo SK, Stirling DI, Hoberman AM, et al. d-Methylphenidate and d,l-methylphenidate are not developmental toxicants in rats and rabbits. Birth Defects Res B Dev Reprod Toxicol 2003 Apr; 68(2): 162–71

    Article  PubMed  CAS  Google Scholar 

  44. Bakhtiar R, Tse FL. Toxicokinetic assessment of methylphenidate (Ritalin) enantiomers in pregnant rats and rabbits. Biomed Chromatogr 2004 Jun; 18(5): 275–81

    Article  PubMed  CAS  Google Scholar 

  45. Teo SK, Stirling DI, Thomas SD, et al. A 90-day oral gavage toxicity study of d-methylphenidate and d,l-methylphenidate in beagle dogs. Int J Toxicol 2003 May–Jun; 22(3): 215–26

    Article  PubMed  CAS  Google Scholar 

  46. Bakhtiar R, Ramos L, Tse FL. Toxicokinetic assessment of methylphenidate (Ritalin) in a 13-week oral toxicity study in dogs. Biomed Chromatogr 2004 Jan; 18(1): 45–50

    Article  PubMed  CAS  Google Scholar 

  47. Data on file, Noven Pharmaceuticals Inc.

  48. Modi NB, Wang B, Noveck RJ, et al. Dose-proportional and stereospecific pharmacokinetics of methylphenidate delivered using an osmotic, controlled-release oral delivery system. J Clin Pharmacol 2000 Oct; 40(10): 1141–9

    PubMed  CAS  Google Scholar 

  49. Srinivas NR, Hubbard JW, Quinn D, et al. Enantioselective pharmacokinetics and pharmacodynamics of dl-threomethylphenidate in children with attention deficit hyperactivity disorder. Clin Pharmacol Ther 1992 Nov; 52(5): 561–8

    Article  PubMed  CAS  Google Scholar 

  50. FDA Psychopharmacologic Drugs Advisory Committee briefing document, December 2, 2005. Methylphenidate transdermal system NDA21-514 [online]. Available from URL: http://www.fda.gov/ohrms/dockets/ac/05/briefing/2005-4195B1_01_01-Noven-Briefing-Document.pdf [Accessed 2006 Aug 28]

  51. Pierce DM, Dixon CM, Wigal SB, et al. Pharmacokinetics of methylphenidate transdermal system in children with ADHD [abstract no. 4581]. Proceedings of the American Academy of Child and Adolescent Psychiatry/Canadian Academy of Child and Adolescent Psychiatry Joint Meeting; 2005 Oct 18–23; Toronto (ON)

  52. Methylphenidate transdermal system [online]. Available from URL: http://www.daytrana.com [Accessed 2006 Aug 1]

  53. Zhu QG, Hu JH, Zeng HW. Stereoselectivity of skin carboxylesterase metabolism. Yao Xue Xue Bao 2005; 40(4): 322–6

    PubMed  CAS  Google Scholar 

  54. Richelson E, Pfenning M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur J Pharmacol 1984 Sep 17; 104(3–4): 277–86

    Article  PubMed  CAS  Google Scholar 

  55. Andersen PH. The dopamine uptake inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 1989 Aug 3; 166(3): 493–504

    Article  PubMed  CAS  Google Scholar 

  56. Schweri MM, Deutsch HM, Massey AT, et al. Biochemical and behavioural characterization of novel methylphenidate analogs. J Pharmacol Exp Ther 2002 May; 301(2): 527–35

    Article  PubMed  CAS  Google Scholar 

  57. Ferris RM, Tang FLM, Maxwell RA. A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. J Pharmacol Exp Ther 1972 Jun; 181(3): 407–16

    PubMed  CAS  Google Scholar 

  58. Patrick KS, Caldwell RW, Ferris RM, et al. Pharmacology of the enantiomers of threo-methylphenidate. J Pharmacol Exp Ther 1987 Apr; 241(1): 152–8

    PubMed  CAS  Google Scholar 

  59. Vickroy TW, Johnson KM. Similar dopamine-releasing effects of phencyclidine and nonamphetamine stimulants in striatal slices. J Pharmacol Exp Ther 1982 Dec; 223(3): 669–74

    PubMed  CAS  Google Scholar 

  60. Heal DJ, Prow MR, Hearson M, et al. Efflux of [3H]dopamine from superfused rat striatal slices: predictive value for detecting stimulant drugs of abuse. Br J Pharmacol 1996; 117: 325P

    Article  Google Scholar 

  61. Russell V, de Villiers A, Sagvolden T, et al. Differences between electrically-, ritalin- and d-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res 1998 Jul; 94(1): 163–71

    Article  PubMed  CAS  Google Scholar 

  62. Wall SC, Gu H, Rudnick G. Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 1995 Mar; 47(3): 544–50

    PubMed  CAS  Google Scholar 

  63. Hurd YL, Ungerstedt U. In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen. Eur J Pharmacol 1989 Jul 18; 166(2): 251–60

    Article  PubMed  CAS  Google Scholar 

  64. Butcher SP, Liptrot J, Aburthnott GW. Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neurosci Lett 1991 Jan 28; 122(2): 245–8

    Article  PubMed  CAS  Google Scholar 

  65. Aoyama T, Yamamoto K, Kotaki H, et al. Pharmacodynamic modeling for change of locomotor activity by methylphenidate in rats. Pharm Res 1997 Nov; 14(11): 1601–6

    Article  PubMed  CAS  Google Scholar 

  66. Ding Y-S, Fowler JS, Volkow ND, et al. Chiral drugs: comparison of the pharmacokinetics of [11C]d-threo and l-threomethylphenidate in the human and baboon brain. Psychopharmacology (Berl) 1997 May; 131(1): 71–8

    Article  CAS  Google Scholar 

  67. Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 1997 May; 68(5): 2032–7

    Article  PubMed  CAS  Google Scholar 

  68. Kuczenski R, Segal DS. Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Psychopharmacology (Berl) 1999 Nov; 147(1): 96–103

    Article  CAS  Google Scholar 

  69. Segal DS, Kuczenski R. Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioural profile. J Pharmacol Exp Ther 1999 Oct; 291(1): 19–30

    PubMed  CAS  Google Scholar 

  70. Kulkarni RS, Rowley HL, Cheetham SC, et al. Differential effects of d- and l-threo-methylphenidate on extracellular levels of dopamine in the striatum and noradrenaline in the frontal cortex: a dual-probe microdialysis study in freely-moving spontaneously hypertensive rats. In: Di Chiara G, Carboni E, Valentini V, et al., editors. Monitoring molecules in neuroscience: proceedings of the 11th International Conference on In Vivo Methods. Cagliari: University of Cagliari, 2006: 499–501

    Google Scholar 

  71. Kuczenski R, Segal DS. Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 2002 Aug 15; 22(16): 7264–71

    PubMed  CAS  Google Scholar 

  72. During MJ, Bean AJ, Roth RH. Effects of CNS stimulants on the in vivo release of the colocalized transmitters, dopamine and neurotensin, from rat prefrontal cortex. Neurosci Lett 1992 Jun 8; 140(1): 129–33

    Article  PubMed  CAS  Google Scholar 

  73. Aoyama T, Kotaki H, Sawada Y, et al. Pharmacokinetics and pharmacodynamics of methylphenidate enantiomers in rats. Psychopharmacology (Berl) 1996 Sep; 127(2): 117–22

    Article  CAS  Google Scholar 

  74. Shaywitz BA, Yager RD, Klopper JH. Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 1976 Jan 23; 191(4224): 305–8

    Article  PubMed  CAS  Google Scholar 

  75. Erinoff L, MacPhail RC, Heller A, et al. Age-dependent effects of 6-hydroxydopamine on locomotor activity in rat. Brain Res 1979 Mar 23; 164: 195–205

    Article  PubMed  CAS  Google Scholar 

  76. Concannon JT, Braughler JM, Schechter MD. The development of brain biogenic amines, cyclic nucleotides and hyperactivity in 6-OHDA-treated rat pups. Pharmacol Biochem Behav 1983 Apr; 18(4): 477–82

    Article  PubMed  CAS  Google Scholar 

  77. Luthman J, Fredriksson A, Lewander T, et al. Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology (Berl) 1989; 99(4): 550–7

    Article  CAS  Google Scholar 

  78. Davids E, Zhang K, Tarazi FI, et al. Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychophar-macology (Berl) 2002 Feb; 160(1): 92–8

    Article  CAS  Google Scholar 

  79. Davids E, Zhang K, Kula NS, et al. Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther 2002 Jun; 301(3): 1097–102

    Article  PubMed  CAS  Google Scholar 

  80. Teo SK, Stirling DI, Thomas SD, et al. Neurobehavioral effects of racemic threo-methylphenidate and its d- and l-enantiomers in rats. Pharmacol Biochem Behav 2003 Feb; 74(3): 747–54

    Article  PubMed  CAS  Google Scholar 

  81. Moser VC, McCormick JP, Creason JP, et al. Comparison of chlordimeform and carbaryl using a functional observational battery. Fundam Appl Toxicol 1988 Aug; 11(2): 189–206

    Article  PubMed  CAS  Google Scholar 

  82. Eckerman DA, Moy SS, Perkins AN, et al. Enantioselective behavioral effects of threo-methylphenidate in rats. Pharmacol Biochem Behav 1991 Dec; 40(4): 875–80

    Article  PubMed  CAS  Google Scholar 

  83. Barkley RA, Grodzinsky G, DuPaul GJ. Frontal lobe functions in attention deficit disorder with and without hyperactivity: a review and research report. J Abnorm Child Psychol 1992 Apr; 20(2): 163–88

    Article  PubMed  CAS  Google Scholar 

  84. Drewe EA. Go — no go learning after frontal lobe lesions in humans. Cortex 1975 Mar; 11(1): 8–16

    PubMed  CAS  Google Scholar 

  85. Pelham WE, Aronoff HR, Midlam JK, et al. A comparison of ritalin and adderall: efficacy and time-course in children with attention-deficit/hyperactivity disorder. Pediatrics 1999 Apr; 103(4): E43

    Article  PubMed  CAS  Google Scholar 

  86. Pelham WE, Gnagy EM, Chronis AM, et al. A comparison of morning-only and morning/late afternoon Adderall to morning-only, twice-daily, and three times-daily methylphenidate in children with attention-deficit/hyperactivity disorder. Pediatrics 1999 Dec; 104(6): 1300–11

    Article  PubMed  CAS  Google Scholar 

  87. Pelham Jr WE, Greenslade KE, Vodde-Hamilton M, et al. Relative efficacy of long-acting stimulants on children with attention deficit-hyperactivity disorder: a comparison of standard methylphenidate, sustained-release methylphenidate, sustained-release dextroamphetamine, and pemoline. Pediatrics 1990 Aug; 86(2): 226–37

    PubMed  Google Scholar 

  88. Efron D, Jarman F, Barker M. Methylphenidate versus dexamphetamine in children with attention deficit hyperactivity disorder: a double-blind, crossover trial. Pediatrics 1997 Dec; 100(6): E6

    Article  PubMed  CAS  Google Scholar 

  89. Winsberg BG, Press M, Bialer I, et al. Dextroamphetamine and methylphenidate in the treatment of hyperactive-aggressive children. Pediatrics 1974 Feb; 53(2): 236–41

    PubMed  CAS  Google Scholar 

  90. Borcherding BG, Keysor CS, Cooper TB, et al. Differential effects of methylphenidate and dextroamphetamine on the motor activity level of hyperactive children. Neuropsychopharmacology 1989 Dec; 2(4): 255–63

    Article  PubMed  CAS  Google Scholar 

  91. Elia J, Borcherding BG, Rapoport JL, et al. Methylphenidate and dextroamphetamine treatments of hyperactivity: are there true nonresponders? Psychiatry Res 1991 Feb; 36(2): 141–55

    Article  PubMed  CAS  Google Scholar 

  92. Wilens TE, Biederman J. The stimulants. Psychiatr Clin North Am 1992 Mar; 15(1): 191–222

    PubMed  CAS  Google Scholar 

  93. Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry 1996 Apr; 35(4): 409–32

    Article  PubMed  CAS  Google Scholar 

  94. Elia J, Ambrosini PJ, Rapoport JL. Treatment of attention-deficit-hyperactivity disorder. N Engl J Med 1999 Mar 11; 340(10): 780–8

    Article  PubMed  CAS  Google Scholar 

  95. Schachter HM, Pham B, King J, et al. How efficacious and safe is short-acting methylphenidate for the treatment of attention-deficit disorder in children and adolescents? A meta-analysis. CMAJ 2001 Nov 27; 165(11): 1475–88

    PubMed  CAS  Google Scholar 

  96. Quinn D, Wigal S, Swanson J, et al. Comparative pharmacody-namics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2004 Nov; 43(11): 1422–9

    Article  PubMed  Google Scholar 

  97. Wigal S, Swanson JM, Feifel D, et al. A double-blind, placebo-controlled trial of dexmethylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2004 Nov; 43(11): 1406–14

    Article  PubMed  Google Scholar 

  98. Greenhill LL, Swanson JM, Vitiello B, et al. Impairment and deportment responses to different methylphenidate doses in children with ADHD: the MTA titration trial. J Am Acad Child Adolesc Psychiatry 2001 Feb; 40(2): 180–7

    Article  PubMed  CAS  Google Scholar 

  99. Wolraich ML, Greenhill LL, Pelham W, et al. Randomized, controlled trial of OROS methylphenidate once a day in children with attention-deficit/hyperactivity disorder. Pediatrics 2001 Oct; 108(4): 883–92

    Article  PubMed  CAS  Google Scholar 

  100. Stein MA, Sarampote CS, Waldman ID, et al. A dose-response study of OROS methylphenidate in children with attention-deficit/hyperactivity disorder. Pediatrics 2003 Nov; 112(5): E404

    Article  PubMed  Google Scholar 

  101. Silva R, Muniz R, Pestreich LK, et al. Efficacy of two long-acting methylphenidate formulations in children with attention-deficit/hyperactivity disorder in a laboratory classroom setting. J Child Adolesc Psychopharmacol 2005 Aug; 15(4): 637–54

    Article  PubMed  Google Scholar 

  102. Lim HK, Hubbard JW, Midha KK. Development of enantioselective gas Chromatographic quantitation assay for dl-threomethylphenidate in biological fluids. J Chromatogr 1986 May 28; 378(1): 109–23

    PubMed  CAS  Google Scholar 

  103. Volkow ND, Wang GJ, Fowler JS, et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 1998 Oct; 155(10): 1325–31

    PubMed  CAS  Google Scholar 

  104. Michelson D, Faries D, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/ hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics 2001 Nov; 108(5): E83

    Article  PubMed  CAS  Google Scholar 

  105. Spencer T, Heiligenstein JH, Biederman J, et al. Results from two proof-of-concept, placebo-controlled studies of atomoxetine in children with attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002 Dec; 63(12): 1140–7

    Article  PubMed  CAS  Google Scholar 

  106. Barrickman LL, Perry PJ, Allen AJ, et al. Bupropion versus methylphenidate in the treatment of attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1995 May; 34(5): 649–57

    Article  PubMed  CAS  Google Scholar 

  107. Michelson D, Allen AJ, Busner J, et al. Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry 2002 Nov; 159(11): 1896–901

    Article  PubMed  Google Scholar 

  108. Kelsey DK, Sumner CR, Casat CD, et al. Once-daily atomoxetine treatment for children with attention-deficit/hyperactivity disorder, including an assessment of evening and morning behavior: a double-blind, placebo-controlled trial. Pediatrics 2004 Jul; 114(1): E1–8

    Article  PubMed  Google Scholar 

  109. Wilens TE, Spencer TJ, Biederman J, et al. A controlled clinical trial of bupropion for attention deficit hyperactivity disorder in adults. Am J Psychiatry 2001 Feb; 158(2): 282–8

    Article  PubMed  CAS  Google Scholar 

  110. Kuperman S, Perry PJ, Gaffney GR, et al. Bupropion SR vs methylphenidate vs placebo for attention deficit hyperactivity disorder in adults. Ann Clin Psychiatry 2001 Sep; 13(3): 129–34

    PubMed  CAS  Google Scholar 

  111. Efron D, Jarman F, Barker M. Side-effects of methylphenidate and dexamphetamine in children with attention deficit hyperactivity disorder: a double-blind, crossover trial. Pediatrics 1997 Oct; 100(4): 662–6

    Article  PubMed  CAS  Google Scholar 

  112. Rapport MD, Moffitt C. Attention deficit/hyperactivity disorder and methylphenidate: a review of height/weight, cardiovascular, and somatic complaint side effects. Clin Psychol Rev 2002 Nov; 22(8): 1107–31

    Article  PubMed  Google Scholar 

  113. Biederman J, Heiligenstein JH, Faries DE, et al. Efficacy of atomoxetine versus placebo in school-age girls with attention-deficit/hyperactivity disorder. Atomoxetine ADHD study group. Pediatrics 2002 Dec; 110(6): E75

    Article  PubMed  Google Scholar 

  114. Bouffard R, Hechtman L, Minde K, et al. The efficacy of two different dosages of methylphenidate in treating adults with attention-deficit hyperactivity disorder. Can J Psychiatry 2003 Sep; 48(8): 546–54

    PubMed  Google Scholar 

  115. Klorman R, Brumaghim JT, Fitzpatrick PA, et al. Clinical effects of a controlled trial of methylphenidate on adolescents with attention deficit disorder. J Am Acad Child Adolesc Psychiatry 1990 Sep; 29(5): 702–9

    Article  PubMed  CAS  Google Scholar 

  116. Heal DJ. Phenylephrine-induced activity in mice as a model of central α1-adrenoceptor function: effects of acute and repeated administration of antidepressant drugs and electroconvulsive shock. Neuropharmacology 1984 Nov; 23(11): 1241–51

    Article  PubMed  CAS  Google Scholar 

  117. Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through α2-adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 2005 Apr 22; 1(1): 2

    Article  PubMed  CAS  Google Scholar 

  118. Oades RD, Sadile AG, Sagvolden T, et al. The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles. Dev Sci 2005 Mar; 8(2): 122–31

    Article  PubMed  Google Scholar 

  119. Barkley RA, McMurray MB, Edelbrock CS, et al. Side-effects of methylphenidate in children with attention deficit hyperactivity disorder: a systemic, placebo-controlled evaluation. Pediatrics 1990 Aug; 86(2): 184–92

    PubMed  CAS  Google Scholar 

  120. Ahmann PA, Waltonen SJ, Olson KA, et al. Placebo-controlled evaluation of ritalin side-effects. Pediatrics 1993 Jun; 91(6): 1101–6

    PubMed  CAS  Google Scholar 

  121. Dorrego MF, Canevaro L, Kuzis G, et al. A randomized, double-blind, crossover study of methylphenidate and lithium in adults with attention-deficit/hyperactivity disorder: preliminary findings. J Neuropsychiatry Clin Neurosci 2002; 14(3): 289–95

    Article  PubMed  CAS  Google Scholar 

  122. Silva R, Tilker HA, Cecil JT, et al. Open-label study of dexmethylphenidate hydrochloride in children and adolescents with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2004; 14(4): 555–63

    Article  PubMed  Google Scholar 

  123. Arnold LE, Lindsay RL, Conners CK, et al. A double-blind, placebo-controlled withdrawal trial of dexmethylphenidate hydrochloride in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2004; 14(4): 542–54

    Article  PubMed  Google Scholar 

  124. Keating GM, Figgitt DP. Dexmethylphenidate. Drugs 2002; 62(13): 1899–904

    Article  PubMed  CAS  Google Scholar 

  125. Rush CR, Baker RW. Behavioral pharmacological similarities between methylphenidate and cocaine in cocaine abusers. Exp Clin Psychopharmacol 2001; 9: 59–73

    Article  PubMed  CAS  Google Scholar 

  126. Golden GS. Gilles de la Tourette’s syndrome following methylphenidate administration. Dev Med Child Neurol 1974 Feb; 16(1): 76–8

    Article  PubMed  CAS  Google Scholar 

  127. Golden GS. The effect of central nervous system stimulants on Tourette syndrome. Ann Neurol 1977 Jul; 2(1): 69–70

    Article  PubMed  CAS  Google Scholar 

  128. Lowe TL, Cohen DJ, Detlor J, et al. Stimulant medications precipitate Tourette’s syndrome. JAMA 1982 Mar 26; 247(12): 1729–31

    Article  PubMed  CAS  Google Scholar 

  129. Costall B, Naylor RJ. The involvement of dopaminergic systems with the stereotyped behaviour patterns induced by methylphenidate. J Pharm Pharmacol 1974 Jan; 26(1): 30–3

    Article  PubMed  CAS  Google Scholar 

  130. Kelly PH, Seviour PW, Iversen SD. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 1975 Sep 5; 94(3): 507–22

    Article  PubMed  CAS  Google Scholar 

  131. Morpurgo C. Aggressive behavior induced by large doses of 2-(2,6-dichlorphenylamino)-2-imidazoline hydrochloride (ST 155) in mice. Eur J Pharmacol 1968 Jul; 3(4): 374–7

    Article  PubMed  CAS  Google Scholar 

  132. Razzak A, Fujiwara M, Ueki S. Automutilation induced by clonidine in mice. Eur J Pharmacol 1975 Feb; 30(2): 356–9

    Article  PubMed  CAS  Google Scholar 

  133. Donnelly M, Rapoport JL, Potter WZ, et al. Fenfluramine and dextroamphetamine treatment of childhood hyperactivity: clinical and biochemical findings. Arch Gen Psychiatry 1989 Mar; 46(3): 205–12

    Article  PubMed  CAS  Google Scholar 

  134. Law SF, Schachar RJ. Do typical clinical doses of methylphenidate cause tics in children treated for attention-deficit hyperactivity disorder? J Am Acad Child Adolesc Psychiatry 1999 Aug; 38(8): 944–51

    Article  PubMed  CAS  Google Scholar 

  135. Borcherding BG, Keysor CS, Rapoport JL, et al. Motor/vocal tics and compulsive behaviors on stimulant drugs: is there a common vulnerability? Psychiatry Res 1990 Jul; 33(1): 83–94

    Article  PubMed  CAS  Google Scholar 

  136. Gadow KD, Sverd J, Sprafkin J, et al. Efficacy of methylphenidate for attention-deficit hyperactivity disorder in children with tic disorder. Arch Gen Psychiatry 1995 Jun; 52(6): 444–55

    Article  PubMed  CAS  Google Scholar 

  137. Gadow KD, Nolan E, Sprafkin J, et al. School observations of children with attention-deficit hyperactivity disorder and comorbid tic disorder: effects of methylphenidate treatment. J Dev Behav Pediatr 1995 Jun; 16(3): 167–76

    Article  PubMed  CAS  Google Scholar 

  138. Lipkin PH, Goldstein IJ, Adesman AR. Tics and dyskinesias associated with stimulant treatment in attention-deficit hyperactivity disorder. Arch Pediatr Adolesc Med 1994 Aug; 148(8): 859–61

    Article  PubMed  CAS  Google Scholar 

  139. Erenberg G, Cruse RP, Rothner AD. Gilles de la Tourette’s syndrome: effects of stimulant drugs. Neurology 1985 Sep; 35(9): 1346–8

    Article  PubMed  CAS  Google Scholar 

  140. Spencer TJ, Biederman J, Wilens TE, et al. Novel treatments for attention-deficit/hyperactivity disorder in children. J Clin Psychiatry 2002; 63Suppl. 12: 16–22

    PubMed  CAS  Google Scholar 

  141. Pliszka SR. Non-stimulant treatment of attention-deficit/hyper-activity disorder. CNS Spectr 2003 Apr; 8(4): 253-8

    PubMed  Google Scholar 

Download references

Acknowledgements

David Heal is a consultant for Shire Pharmaceuticals and David Pierce is employed by Shire Pharmaceutical Development Ltd. David Heal gratefully acknowledges the financial support provided by Shire Pharmaceuticals to assist in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Heal.

Appendix

Appendix

Adderall®, Adderall XR® and Daytrana™ are registered trademarks of Shire LLC. Ritalin® is a registered trademark of Novartis Pharmaceuticals Corporation. Metadate CR™ is a trademark of Celltech Pharmaceutical Inc. Concerta® and OROS® are registered trademarks of ALZA Corporation. Focalin®, Focalin XR™ and Ritalin LA® are trademarks of Novartis Pharmaceuticals Corporation. Attenade™ is a trademark of Celgene Corporation. Strattera® is a registered trademark of Eli Lilly and Co.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heal, D.J., Pierce, D.M. Methylphenidate and its Isomers. CNS Drugs 20, 713–738 (2006). https://doi.org/10.2165/00023210-200620090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200620090-00002

Keywords

Navigation