Skip to main content
Log in

Beyond the Human Genome

Examples of Nuclear Receptor Analysis in Model Organisms and Potential for Drug Discovery

  • Genomics in Drug Development
  • Published:
American Journal of Pharmacogenomics

Abstract

The nuclear receptor (NR) superfamily is a large group of related, pharmacologically important receptors, comprising the targets for over 10% of commonly prescribed drugs. Cross-genome analysis of NR sequence, structure, and biological function, provides an important source of information on the function of human NRs and thus plays a role in NR drug discovery. For example, research on the pregnane X receptor (PXR; NR1I2), constitutive androstane receptor (CAR; NR1I3), hepatocyte nuclear factor 4 (HNF4; NR2A1), and farnesoid X receptor (FXR) illustrate how the study of nonhuman orthologs has provided new insights into NR biology and has increased our understanding of human NRs and orphan NR function. Understanding differences between humans and pharmacological model species may provide useful tools for the development of new NR-binding drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4

Similar content being viewed by others

References

  1. Willson TM, Moore JT. Minireview: genomics versus orphan nuclear receptors: a half-time report. Mol Endocrinol 2002; 16(6): 1135–44

    Article  PubMed  CAS  Google Scholar 

  2. Robyr D, Wolffe AP, Wahli W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 2000; 14(3): 329–47

    Article  PubMed  CAS  Google Scholar 

  3. McKenna NJ, O’Malley BW. Minireview: nuclear receptor coactivators: an update. Endocrinology 2002; 143(7): 2461–5

    Article  PubMed  CAS  Google Scholar 

  4. Steinmetz AC, Renaud JP, Moras D. Binding of ligands and activation of transcription by nuclear receptors. Annu Rev Biophys Biomol Struct 2001; 30: 329–59

    Article  PubMed  CAS  Google Scholar 

  5. Willson TM, Jones SA, Moore JT, et al. Chemical genomics: functional analysis of orphan nuclear receptors in the regulation of bile acid metabolism. Med Res Rev 2001; 21(6): 513–22

    Article  PubMed  CAS  Google Scholar 

  6. Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem 2001; 276(41): 37735–8

    PubMed  CAS  Google Scholar 

  7. Edwards PA, Kast HR, Anisfeld AM. BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res 2002; 43(1): 2–12

    PubMed  CAS  Google Scholar 

  8. Willson TM, Kliewer SA. PXR, CAR and drug metabolism. Nat Rev Drug Discov 2002; 1(4): 259–66

    Article  PubMed  CAS  Google Scholar 

  9. Sluder AE, Mathews SW, Hough D, et al. The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. Genome Res 1999; 9(2): 103–20

    PubMed  CAS  Google Scholar 

  10. Enmark E, Gustafsson JA. Comparing nuclear receptors in worms, flies and humans. Trends Pharmacol Sci 2001; 22(12): 611–5

    Article  PubMed  CAS  Google Scholar 

  11. Maglich JM, Sluder A, Guan X, et al. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2001; 2(8): 17–29

    Article  Google Scholar 

  12. Robinson-Rechavi M, Carpentier AS, Duffraisse M, et al. How many nuclear hormone receptors are there in the human genome? Trends Genet 2001; 17(10): 554–6

    Article  PubMed  CAS  Google Scholar 

  13. Maglich JM, Caravella JA, Lambert MH, et al. The complete nuclear receptor set from a teleost fish is dramatically expanded relative to humans. Nucleic Acids Res 2003; 31(14): 1–7

    Article  Google Scholar 

  14. A unified nomenclature system for the nuclear receptor superfamily [online]. Available from URL: http://www.ens-lyon.fr/LBMC/laudet/NucRec/Nomen-clature.html [Accessed 2003 Sep 29]

  15. Laudet V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 1997; 19(3): 207–26

    Article  PubMed  CAS  Google Scholar 

  16. Dehal P, Satou Y, Campbell RK, et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 2002; 298(5601): 2157–67

    Article  PubMed  CAS  Google Scholar 

  17. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 2002; 23(5): 687–702

    Article  PubMed  CAS  Google Scholar 

  18. Dussault I, Forman BM. The nuclear receptor PXR: a master regulator of ‘homeland’ defense. Crit Rev Eukaryot Gene Expr 2002; 12(1): 53–64

    Article  PubMed  CAS  Google Scholar 

  19. Solymoss B, Toth S, Varga S, et al. Influence of spironolactone and other steroids on the plasma level of digitoxin. Recent Adv Stud Cardiac Struct Metab 1972; 1: 605–11

    PubMed  CAS  Google Scholar 

  20. Lu AY, Somogyi A, West S, et al. Pregnenolone-16a-carbonitrile: a new type of inducer of drug-metabolizing enzymes. Arch Biochem Biophys 1972; 152(2): 457–62

    Article  PubMed  CAS  Google Scholar 

  21. Jones SA, Moore LB, Shenk JL, et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 2000; 14(1): 27–39

    Article  PubMed  CAS  Google Scholar 

  22. Blumberg B, Sabbagh Jr W, Juguilon H, et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 1998; 12(20): 3195–205

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto Y, Kawamoto T, Negishi M. The role of the nuclear receptor CAR as a coordinate regulator of hepatic gene expression in defense against chemical toxicity. Arch Biochem Biophys 2003; 409(1): 207–11

    Article  PubMed  CAS  Google Scholar 

  24. Tzameli I, Moore DD. Role reversal: new insights from new ligands for the xenobiotic receptor CAR. Trends Endocrinol Metab 2001; 12(1): 7–10

    Article  PubMed  CAS  Google Scholar 

  25. Moore LB, Maglich JM, McKee DD, et al. Pregnane X Receptor (PXR), Constitutive Androstane Receptor (CAR), and Benzoate X Receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 2002; 16(5): 977–86

    Article  PubMed  CAS  Google Scholar 

  26. Watkins RE, Wisely GB, Moore LB, et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 2001; 292(5525): 2329–33

    Article  PubMed  CAS  Google Scholar 

  27. Watkins RE, Maglich JM, Moore LB, et al. 2.1: a crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 2003; 42(6): 1430–8

    Article  PubMed  CAS  Google Scholar 

  28. Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 2000; 5(1): 173–9

    Article  PubMed  CAS  Google Scholar 

  29. Owen GI, Zelent A. Origins and evolutionary diversification of the nuclear receptor superfamily. Cell Mol Life Sci 2000; 57(5): 809–27

    Article  PubMed  CAS  Google Scholar 

  30. Escriva H, Safi R, Hanni C, et al. Ligand binding was acquired during evolution of nuclear receptors. Proc Natl Acad Sci U S A 1997; 94(13): 6803–8

    Article  PubMed  CAS  Google Scholar 

  31. Shih DQ, Dansky HM, Fleisher M, et al. Genotype/phenotype relationships in HNF-4alpha/MODY1: haploinsufficiency is associated with reduced apolipoprotein (All), apolipoprotein (CIII), lipoprotein (a), and triglyceride levels. Diabetes 2000; 49(5): 832–7

    Article  PubMed  CAS  Google Scholar 

  32. Zhong W, Sladek FM, Darnell Jr JE. The expression pattern of a Drosophila homolog to the mouse transcription factor HNF-4 suggests a determinative role in gut formation. EMBO J 1993; 12(2): 537–44

    PubMed  CAS  Google Scholar 

  33. Chen WS, Manova K, Weinstein DC, et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 1994; 8(20): 2466–77

    Article  PubMed  CAS  Google Scholar 

  34. Sluder AE, Maina CV. Nuclear receptors in nematodes: themes and variations. Trends Genet 2001; 17(4): 206–13

    Article  PubMed  CAS  Google Scholar 

  35. VanGilst M, Gissendanner CR, Sluder AE. Diversity and function of orphan nuclear receptors in nematodes. Crit Rev Eukaryot Gene Expr 2002; 12(1): 65–88

    Article  PubMed  Google Scholar 

  36. Robinson-Rechavi M, Maina C, Gissendanner C, et al. Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. Genomics. In press

  37. Nelson CC, Hendy SC, Romaniuk PJ. Relationship between P-box amino acid sequence and DNA binding specificity of the thyroid hormone receptor: the effects of half-site sequence in everted repeats. J Biol Chem 1995; 270(28): 16981–7

    Article  PubMed  CAS  Google Scholar 

  38. Wisely GB, Miller AB, Davis RG, et al. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure (Camb) 2002; 10(9): 1225–34

    Article  CAS  Google Scholar 

  39. Stehlin C, Wurtz JM, Steinmetz A. X-ray structure of the orphan nuclear receptor RORbeta ligand-binding domain in the active conformation. EMBO J 2001; 20(21): 5822–31

    Article  PubMed  CAS  Google Scholar 

  40. Billas IM, Moulinier I, Rochel N, et al. Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 2001; 276(10): 7465–74

    Article  PubMed  CAS  Google Scholar 

  41. Clayton GM, Peak-Chew SY, Evans RM, et al. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci U S A 2001; 98(4): 1549–54

    Article  PubMed  CAS  Google Scholar 

  42. Kallen JA, Schlaeppi J-M, Bitsch F, et al. X-ray structure of the hRORa LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORa. Structure 2002; 10: 1697–707

    Article  PubMed  CAS  Google Scholar 

  43. Goodwin B, Kliewer SA. Nuclear receptors: I. Nuclear receptors and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol 2002; 282(6): G926–31

    PubMed  CAS  Google Scholar 

  44. Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102(6): 731–44

    Article  PubMed  CAS  Google Scholar 

  45. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284(5418): 1365–8

    Article  PubMed  CAS  Google Scholar 

  46. Otte K, Kranz H, Kober I, et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol 2003; 23(3): 864–72

    Article  PubMed  CAS  Google Scholar 

  47. Mi LZ, Devarakonda S, Harp JM, et al. Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell 2003; 11(4): 1093–100

    Article  PubMed  CAS  Google Scholar 

  48. Huber RM, Murphy K, Miao B, et al. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 2002; 290(1-2): 35–43

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 2003; 278(1): 104–10

    Article  PubMed  CAS  Google Scholar 

  50. GOLD™ genomics online database [online]. Available from URL: http://wit.integratedgenomics.com/GOLD/ [Accessed 2003 Aug 27]

Download references

Acknowledgements

The writing of this article was funded by GlaxoSmithKline, Inc. The authors have no conflicts of interest with any of the material contained in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglich, J.M., Sluder, A.E., Willson, T.M. et al. Beyond the Human Genome. Am J Pharmacogenomics 3, 345–353 (2003). https://doi.org/10.2165/00129785-200303050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303050-00005

Keywords

Navigation