Differential expression and function of CYP2C isoforms in human intestine and liver

Pharmacogenetics. 2003 Sep;13(9):565-75. doi: 10.1097/00008571-200309000-00005.

Abstract

This study aimed to characterize the intestinal and hepatic expression and function of CYP2C enzymes in the same set of subjects. CYP2C isoform-specific quantitative reverse transcription-polymerase chain reaction assays, Western immunoblotting and marker reactions of CYP2C8, CYP2C9 and CYP2C19 activities were employed to investigate expression and activity of the CYP2C isoforms in samples of small intestine and liver obtained from 15 patients undergoing gastrectomy or pancreatoduodenectomy. The rank order for CYP2C mRNA expression in the intestine was CYP2C9 = CYP2C18 > CYP2C19 > CYP2C8, whereas that in the liver was CYP2C9 > CYP2C8 > CYP2C18 > CYP2C19. The rank order for expression of CYP2C protein in the intestine was CYP2C9 > CYP2C19 > CYP2C8 (content below limit of quantification) > CYP2C18 (not detected) and that in the liver was CYP2C9 > CYP2C8 > CYP2C19 > CYP2C18 (not detected). The CYP2C9 protein content was approximately 10-fold higher in the liver than in the intestine (P < 0.001). The CLint for the formation of D-703 from verapamil (marker of CYP2C8 activity) was 7.6-fold higher (P < 0.001) and that for the diclofenac 4'-hydroxylation (marker of CYP2C9 activity) was 6.1-fold higher (P < 0.001) in the liver than in the intestine. Apart from a borderline positive correlation (r = 0.58, P = 0.0504) between the intestinal and hepatic CLint for the diclofenac 4'-hydroxylation, no intra-individual relationships between these tissues with respect to expression or activity of different CYP2C isoforms were found. Collectively, these results show that CYP2C8, CYP2C9 and CYP2C19 are expressed as functional enzymes in the human small intestine, and further suggest that CYP2C genes are independently regulated in human intestine and liver. Although, overall, the expression and activity of CYP2C enzymes is lower in the gut than in the liver, the surface area of the proximal small intestine is large and intestinal CYP2C9 and CYP2C19 may well contribute to the first-pass metabolism of their substrate drugs.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Female
  • Gene Expression Regulation, Enzymologic
  • Genetic Markers
  • Humans
  • Intestine, Small / enzymology
  • Intestines / enzymology*
  • Isoenzymes / genetics
  • Isoenzymes / metabolism*
  • Liver / enzymology*
  • Male
  • Middle Aged
  • RNA, Messenger / metabolism

Substances

  • Genetic Markers
  • Isoenzymes
  • RNA, Messenger
  • cytochrome P-450 CYP2C subfamily
  • Cytochrome P-450 Enzyme System