Degradation of cytochrome P450 2E1: selective loss after labilization of the enzyme

Arch Biochem Biophys. 1992 Feb 14;293(1):9-16. doi: 10.1016/0003-9861(92)90358-4.

Abstract

Mechanism-based inactivation of cytochrome P450 can result in the chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. In the present study we took advantage of different modes of inactivation of P450 2E1 by CCl4, 1-aminobenzotriazole, or 3-amino-1,2,4-triazole to investigate parameters which target P450 2E1 for proteolysis from the microsomal membrane. Treatment of mice with CCl4 at the point of maximal induction of P450 2E1 after a single oral dose of acetone resulted in the complete loss of P450 2E1-dependent p-nitrophenol hydroxylation and a 75% loss of immunochemically detectable protein within 1 h of administration. Treatment with 1-aminobenzotriazole at the point of maximal induction caused a complete loss of P450 2E1-dependent p-nitrophenol hydroxylation but only a 12% loss of immunochemically detectable protein 1 h after administration. Treatment of mice with 3-amino-1,2,4-triazole caused a rapid loss of both catalytic activity and microsomal p-nitrophenol hydroxylase activity. However, unlike CCl4 treatment, the activity and enzyme level rebounded 5 and 9 h after treatment. The P450 2E1 ligand, 4-methylpyrazole, administered at the point of maximal induction maintained the acetone-induced catalytic and immunochemical level of P450 2E1. These results suggest that differentially modified forms of P450 2E1 show a characteristic susceptibility to degradation. While there are many potential pathways for protein degradation, the loss of P450 2E1 was associated with increased formation of high molecular weight microsomal ubiquitin conjugates. The formation of ubiquitin-conjugated microsomal protein which correlates with P450 2E1 loss suggests that ubiquitination may represent a proteolytic signal for the rapid and selective proteolysis of certain labilized conformations of P450 2E1 from the endoplasmic reticulum.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetone / metabolism
  • Alkylation
  • Amino Acid Sequence
  • Aminopyrine N-Demethylase / metabolism
  • Animals
  • Carbon Tetrachloride Poisoning / enzymology
  • Cytochrome P-450 CYP2E1
  • Cytochrome P-450 Enzyme System / metabolism*
  • Cytochromes b5 / metabolism
  • Endoplasmic Reticulum / metabolism
  • Ligands
  • Male
  • Mice
  • Mixed Function Oxygenases / metabolism
  • Molecular Sequence Data
  • Oxidoreductases, N-Demethylating / metabolism*
  • Protein Denaturation
  • Time Factors
  • Triazoles / pharmacology
  • Ubiquitins / metabolism

Substances

  • Ligands
  • Triazoles
  • Ubiquitins
  • Acetone
  • 1-aminobenzotriazole
  • Cytochromes b5
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Cytochrome P-450 CYP2E1
  • Oxidoreductases, N-Demethylating
  • Aminopyrine N-Demethylase