Effects of N-linked glycosylation on the creatine transporter

Biochem J. 2006 Jan 15;393(Pt 2):459-69. doi: 10.1042/BJ20050857.

Abstract

The CRT (creatine transporter) is a member of the Na+- and Cl--dependent neurotransmitter transporter family and is responsible for the import of creatine into cells, and thus is important for cellular energy metabolism. We established for CRT an expression system in HEK-293 cells that allowed biochemical, immunological and functional analysis of CRT wild-type and glycosylation-deficient mutants. Analysis of HA (haemagglutinin)-tagged CRT-NN (wild-type rat CRT with an HA-tag at the C-terminus) revealed several monomeric immunoreactive species with apparent molecular masses of 58, 48 and 43 kDa. The 58 kDa species was shown to be plasma-membrane-resident by EndoHf (endoglycosidase Hf) and PNGase F (peptide N-glycosidase F) treatments and represents fully glycosylated CRT, whereas the 48 kDa and 43 kDa species were glycosylation intermediates and non-glycosylated CRT respectively. Glycosylation-deficient mutants (Asn192Asp, Asn197Asp and Asn192Asp/Asn197Asp) showed altered electrophoretic mobility, indicating that CRT is indeed N-glycosylated. In addition, a prominent CRT band in the range of 75-91 kDa was also detected. Pharmacological inhibition of N-linked glycosylation by tunicamycin in CRT-NN-expressing cells gave a similar reduction in molecular mass, corroborating the finding that Asn192 and Asn197 are major N-glycosylation sites in CRT. Although the apparent Km was not significantly affected in glycosylation-deficient mutants compared with CRT-NN, we measured reduced Vmax values for all mutants (21-28% residual activity), and 51% residual activity after enzymatic deglycosylation of surface proteins in intact CRT-NN cells by PNGase F. Moreover, immunocytochemical analysis of CRT-NN- and CRT-DD-expressing cells (where CRT-DD represents a non-glycosylated double mutant of CRT, i.e. Asn192Asp/Asn197Asp) showed a lower abundance of CRT-DD in the plasma membrane. Taken together, our results suggest that plasma-membrane CRT is glycosylated and has an apparent monomer molecular mass of 58 kDa. Furthermore, N-linked glycosylation is neither exclusively important for the function of CRT nor for surface trafficking, but affects both processes. These findings may have relevance for closely related neurotransmitter transporter family members.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Binding Sites
  • Cell Line
  • Cell Membrane / metabolism
  • Electrophoresis, Gel, Two-Dimensional
  • Gene Expression
  • Glycosylation
  • Humans
  • Membrane Transport Proteins / chemistry*
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism*
  • Mutagenesis, Site-Directed
  • Protein Transport
  • Rats
  • Sequence Alignment
  • Sequence Homology, Amino Acid

Substances

  • Membrane Transport Proteins
  • creatine transporter