Local inhibition of organic cation transporters increases extracellular serotonin in the medial hypothalamus

Brain Res. 2005 Nov 23;1063(1):69-76. doi: 10.1016/j.brainres.2005.09.016. Epub 2005 Nov 2.

Abstract

In the rat dorsomedial hypothalamus (DMH), serotonin (5-HT) concentrations are altered rapidly in response to acute stressors. The mechanism for rapid changes in 5-HT concentrations in the DMH is not clear. We hypothesize that the mechanism involves corticosteroid-induced alterations in the uptake of 5-HT from extracellular fluid through the action of corticosterone-sensitive organic cation transporters (OCTs). To determine if OCTs affect the clearance of 5-HT from the extracellular fluid compartment within the medial hypothalamus (MH), the OCT blocker, decynium 22 (0, 10, 30, or 100 microM), was perfused into the MH via a microdialysis probe, and dialysate 5-HT concentrations were measured at 20 min intervals. In addition, home cage behavior was measured both before and after drug administration. Inhibition of OCTs in the MH resulted in a reversible dose-dependent increase in extracellular 5-HT concentration. Increases in extracellular 5-HT concentrations were associated with increases in grooming behavior in rats treated with the highest concentration of decynium 22. No other behavioral responses were observed following administration of any concentration of decynium 22. These findings are consistent with the hypothesis that OCTs in the MH play an important role in the regulation of serotonergic neurotransmission and specific behavioral responses. Because the MH plays an important role in the neuroendocrine, autonomic, and behavioral responses to stress-related stimuli, these data lead to new questions regarding the role of interactions between corticosterone and corticosterone-sensitive OCTs in stress-induced 5-HT accumulation within the MH as well as the physiological and behavioral consequences of these interactions.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Dose-Response Relationship, Drug
  • Extracellular Fluid / chemistry
  • Grooming / drug effects*
  • Grooming / physiology
  • Hypothalamus, Middle / drug effects
  • Hypothalamus, Middle / metabolism*
  • Male
  • Microdialysis
  • Organic Cation Transport Proteins / antagonists & inhibitors
  • Organic Cation Transport Proteins / physiology*
  • Quinolines / administration & dosage
  • Rats
  • Rats, Wistar
  • Serotonin / analysis
  • Serotonin / metabolism*
  • Statistics, Nonparametric

Substances

  • Organic Cation Transport Proteins
  • Quinolines
  • pseudoisocyanine
  • Serotonin