Liver regeneration and aging: a current perspective

Curr Gerontol Geriatr Res. 2011:2011:526379. doi: 10.1155/2011/526379. Epub 2011 Sep 8.

Abstract

Many organ systems exhibit significant age-related deficits, but, based on studies in old rodents and elderly humans, the liver appears to be relatively protected from such changes. A remarkable feature of the liver is its capacity to regenerate its mass following partial hepatectomy. Reports suggests that aging compromises the liver's regenerative capacity, both in the rate and to the extent the organ's original volume is restored. There has been modest definitive information as to which cellular and molecular mechanisms regulating hepatic regeneration are affected by aging. Changes in hepatic sensitivity to growth factors, for example, epidermal growth factor (EGF), appear to influence regeneration in old animals. Studies have demonstrated (a) a 60% decline in EGF binding to hepatocyte plasma membranes, (b) reduced expression of the hepatic high affinity EGF receptor and (c) a block between G1 and S-phases of the cell cycle in old rats following EGF stimulation. Recent studies suggest that reduced phosphorylation and dimerization of the EGF receptor, critical steps in the activation of the extracellular signal-regulated kinase pathway and subsequent cell proliferation are responsible. Other studies have demonstrated that aging affects the upregulation of a Forkhead Box transcription factor, FoxM1B, which is essential for growth hormone-stimulated liver regeneration in hepatectomized mice. Aging appears to compromise liver regeneration by influencing several pathways, the result of which is a reduction in the rate of regeneration, but not in the capacity to restore the organ to its original volume.