Abstract
The antifungal agent fluconazole was found to be a potent inhibitor of cytochrome P450 (P450) 2C9 (Ki = 7-8 microM), the principal enzyme responsible for the clearance (85%) of the more potent anticoagulant (S)-warfarin to the inactive (S)-7- and (S)-6-hydroxywarfarin metabolites in vivo. Fluconazole was also found to be a potent inhibitor of the P4503A4-catalyzed formation of (R)-10-hydroxywarfarin (Ki = 15-18 microM) as well as the low KM P450 enzymes responsible for the formation of (R)-6-, (R)-7-, and (R)-8-hydroxywarfarin (Ki = 2-6 microM). By contrast, experiments with the P4501A2 inhibitor furafylline and cDNA-expressed P4501A2 indicate that fluconazole is a weak inhibitor of this enzyme (Ki > 800 microM), as measured by the inability of fluconazole to significantly suppress the P4501A2-dependent 6-hydroxylation of (R)-warfarin. The prediction generated from these studies, that fluconazole is a potent in vivo inhibitor of warfarin metabolism, , is tested in complementary studies reported in the accompanying article, "Warfarin-Fluconazole II".