Abstract
In vitro methods were used to identify the cytochrome P450 (CYP) enzyme(s) involved in S-mephenytoin N-demethylation. S-Mephenytoin (200 microM) was incubated with human liver microsomes, and nirvanol formation was quantitated by reversed-phase HPLC. S-Mephenytoin N-demethylase activity in a panel of human liver microsomes ranged 35-fold from 9 to 319 pmol/min/mg protein and correlated strongly with microsomal CYP2B6 activity (r = 0.91). Additional correlations were found with microsomal CYP2A6 and CYP3A4 activity (r = 0.88 and 0.74, respectively). Microsomes prepared from human beta-lymphoblastoid cells transformed with individual P450 cDNAs were assayed for S-mephenytoin N-demethylase activity. Of 11 P450 isoforms (P450s 1A1, 1A2, 2A6, 2B6, 2E1, 2D6, 2C8, 2C9, 2C19, 3A4, and 3A5) tested, only CYP2B6 catalyzed the N-demethylation of S-mephenytoin with an apparent K(m) of 564 microM. Experiments with P450 form-selective chemical inhibitors, competitive substrates, and anti-P450 antibodies were also performed. Troleandomycin, a mechanism-based CYP3A selective inhibitor, and coumarin, a substrate for CYP2A6 and therefore a potential competitive inhibitor, failed to inhibit human liver microsomal S-mephenytoin N-demethylation. In contrast, orphenadrine, an inhibitor of CYP2B forms, produced a 51 +/- 4% decrease in S-mephenytoin N-demethylase activity in human liver microsomes and a 45% decrease in recombinant microsomes expressing CYP2B6. Also, both CYP2B6-marker 7-ethoxytrifluoromethylcoumarin O-deethylase and S-mephenytoin N-demethylase activities were inhibited by approximately 65% by 5 mg anti-CYP2B1 IgG/mg microsomal protein. Finally, polyclonal antibody inhibitory to CYP3A1 failed to inhibit S-mephenytoin N-demethylase activity. Taken together, these studies indicate that the N-demethylation of S-mephenytoin by human liver microsomes is catalyzed primarily by CYP2B6.