Abstract
The antifungal agent fluconazole was found to be a potent inhibitor of cytochrome P450 (P450) 2C9 (Ki = 7-8 microM), the principal enzyme responsible for the clearance (85%) of the more potent anticoagulant (S)-warfarin to the inactive (S)-7- and (S)-6-hydroxywarfarin metabolites in vivo. Fluconazole was also found to be a potent inhibitor of the P4503A4-catalyzed formation of (R)-10-hydroxywarfarin (Ki = 15-18 microM) as well as the low KM P450 enzymes responsible for the formation of (R)-6-, (R)-7-, and (R)-8-hydroxywarfarin (Ki = 2-6 microM). By contrast, experiments with the P4501A2 inhibitor furafylline and cDNA-expressed P4501A2 indicate that fluconazole is a weak inhibitor of this enzyme (Ki > 800 microM), as measured by the inability of fluconazole to significantly suppress the P4501A2-dependent 6-hydroxylation of (R)-warfarin. The prediction generated from these studies, that fluconazole is a potent in vivo inhibitor of warfarin metabolism, , is tested in complementary studies reported in the accompanying article, "Warfarin-Fluconazole II".
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|