Abstract
In order to simulate the distribution and elimination of radioiodinated human beta-endorphin (125I-beta-EP) after iv bolus injection in rats, we proposed a physiologically based pharmacokinetic model incorporating diffusional transport of 125I-beta-EP across the capillary membrane. This model assumes that the distribution of 125I-beta-EP is restricted only within the blood and the tissue interstitial fluid, and that a diffusional barrier across the capillary membrane exists in each tissue except the liver. The tissue-to-blood partition coefficients were estimated from the ratios of the concentration in tissues to that in arterial plasma at the terminal (pseudoequilibrium) phase. The total body plasma clearance (9.0 ml/min/kg) was appropriately assigned to the liver and kidney. The transcapillary diffusion clearances of 125I-beta-EP were also estimated and shown to correlate linearly with that of inulin in several tissues. Numerically solving the mass-balance differential equations as to plasma and each tissue simultaneously, simulated concentration curves of 125I-beta-EP corresponded well with the observed data. It was suggested by the simulation that the initial rapid disappearance of 125I-beta-EP from plasma after iv injection could be attributed in part to the transcapillary diffusion of the peptide.
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|