Abstract
2,3,5-(Triglutathion-S-yl)hydroquinone [2,3,5-(triGSyl)HQ] is a potent nephrotoxicant when administered to male rats. We now report that significant species differences exist in susceptibility to 2,3,5-(triGSyl)HQ-mediated nephrotoxicity. Metabolism of glutathione conjugates involves cleavage of teh glutamate and glycine moieties by gamma-glutamyltranspeptidase (gamma-GT) and dipeptidases, respectively, and the nephrotoxicity of 2,3,5-(triGSyl)HQ can be prevented by the inhibition of renal gamma-GT. The resulting cysteine conjugate exhibits a balance between N-acetylation, and N-deacetylation of the mercapturic acid biosynthesis in various species contribute to species susceptibility to 2,3,5-(triGSyl)HQ. Renal gamma-GT activity toward 2,3,5-(triGSyl)HQ was highest in the rat (Fischer 344 and Sprague-Dawley) and consistent with the sensitivity of this species to 2,3,5-(triGSyl)HQ (20 micromol/kg iv)-mediated nephrotoxicity. The gamma-GT-mediated hydrolysis of 2,3,5-(triGSyl)HQ was similar in B6C3F1 and BALB/c mice and guinea pigs. In these species, the gamma-GT activity ranged between 30-45% of the activity measured in rats. Although, the activity of gamma-GT was similar in mice and guinea pigs, only guinea pigs were susceptible to 2,3,5-(triGSyl)HQ (200 micromol/kg iv)-induced renal necrosis. The gamma-GT-mediated hydrolysis of 2,3,5-(triGSyl)HQ was lowest in the hamster, and this species were not susceptible to the renal toxicity of this conjugate. Thus, factors in addition to gamma-GT activity probably contribute to species susceptibility to 2,3,5-(triGSyl)HQ nephrotoxicity. The kinetics of the AT-125-mediated inhibition of gamma-GT differed between species, indicative of potential differences in the regulation of gamma-GT. Consistent with this view, the ratio between the hydrolysis and transpeptidation of 2,3,5-(triGSyl)HQ varied 10-fold between the species examined, and was highest in the guinea pig (0.48) and lowest in the hamster (0.05). Guinea pigs also exhibited the highest renal cytosolic N-deacetylase activity and the lowest N-acetylase activity. The ratios of N-deacetylation to N-acetylation in guinea pigs, BALB/c mice, B6C3F1 mice, hamsters, Fischer 344 rats, and Sprague-Dawley rats were 4.57, 0.16, 0.14, 0.04, 0.03, and 0.02, respectively. Because quinol-cysteine conjugates seem to undergo oxidation more readily than the corresponding mercapturates, the balance of N-deacetylase and N-acetylase in the guinea pig may contribute to the susceptibility of this species to 2,3,5-(triGSyl)HQ nephrotoxicity.
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|