Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

CYP2D6-CYP2C9 Protein-Protein Interactions and Isoform-Selective Effects on Substrate Binding and Catalysis

Murali Subramanian, Michael Low, Charles W. Locuson and Timothy S. Tracy
Drug Metabolism and Disposition August 2009, 37 (8) 1682-1689; DOI: https://doi.org/10.1124/dmd.109.026500
Murali Subramanian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Low
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles W. Locuson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy S. Tracy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cytochrome P450 (P450) protein-protein interactions have been observed with various in vitro systems. It is interesting to note that these interactions seem to be isoform-dependent, with some combinations producing no effect and others producing increased or decreased catalytic activity. With some exceptions, most of the work to date has involved P450s from rabbit, rat, and other animal species, with few studies including human P450s. In the studies presented herein, the interactions of two key drug-metabolizing enzymes, CYP2C9 and CYP2D6, were analyzed in a purified, reconstituted enzyme system for changes in both substrate-binding affinity and rates of catalysis. In addition, an extensive study was conducted as to the “order of mixing” for the reconstituted enzyme system and the impact on the observations. CYP2D6 coincubation inhibited CYP2C9-mediated (S)-flurbiprofen metabolism in a protein concentration-dependent manner. Vmax values were reduced by up to 50%, but no appreciable effect on Km was observed. Spectral binding studies revealed a 20-fold increase in the KS of CYP2C9 toward (S)-flurbiprofen in the presence of CYP2D6. CYP2C9 coincubation had no effect on CYP2D6-mediated dextromethorphan O-demethylation. The order of combination of the proteins (CYP2C9, CYP2D6, and cytochrome P450 reductase) influenced the magnitude of catalysis inhibition as well as the ability of increased cytochrome P450 reductase to attenuate the change in activity. A simple model, congruent with current results and those of others, is proposed to explain oligomer formation. In summary, CYP2C9-CYP2D6 interactions can alter catalytic activity and, thus, influence in vitro-in vivo correlation predictions.

Footnotes

  • This work was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant GM063215].

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.109.026500.

  • ABBREVIATIONS: P450, cytochrome P450; CPR, NADPH-cytochrome P450 reductase; b5, cytochrome b5; DLPC, dilauroylphosphatidylcholine; HPLC, high-performance liquid chromatography; KS, spectrally determined binding affinity.

    • Accepted May 15, 2009.
    • Received January 3, 2009.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 37 (8)
Drug Metabolism and Disposition
Vol. 37, Issue 8
1 Aug 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CYP2D6-CYP2C9 Protein-Protein Interactions and Isoform-Selective Effects on Substrate Binding and Catalysis
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
Citation Tools
Research ArticleArticle

CYP2D6-CYP2C9 Protein-Protein Interactions and Isoform-Selective Effects on Substrate Binding and Catalysis

Murali Subramanian, Michael Low, Charles W. Locuson and Timothy S. Tracy
Drug Metabolism and Disposition August 1, 2009, 37 (8) 1682-1689; DOI: https://doi.org/10.1124/dmd.109.026500

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

CYP2D6-CYP2C9 Protein-Protein Interactions and Isoform-Selective Effects on Substrate Binding and Catalysis

Murali Subramanian, Michael Low, Charles W. Locuson and Timothy S. Tracy
Drug Metabolism and Disposition August 1, 2009, 37 (8) 1682-1689; DOI: https://doi.org/10.1124/dmd.109.026500
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • NRF2-Independent Regulation of DMEs by Cadmium and ITCs
  • OATP Uptake in HEK293 Cells with and without Plasma
  • P450 Activities in Paired Liver and Small Intestinal Samples
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics