Abstract
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite,trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen ortrans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 ± 20 pmol/40 min/0.2 nmol P450 using 18 μM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 ± 0.8 and 3.1 ± 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 μM tamoxifen). These two forms also catalyzed 4′-hydroxylation (13.0 ± 1.9 and 1.4 ± 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 μM tamoxifen; 0.51 ± 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 μM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifentrans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Footnotes
-
Funding for this study was provided by the Kathleen Cuningham Foundation for Breast Cancer Research and the Australian Cancer Fund.
- Abbreviations used are::
- P450
- cytochrome P450 (heme-thiolate protein P450)
- HPLC
- high-performance liquid chromatography
- hNPR
- human NADPH-cytochrome P450 reductase
- Received December 17, 2001.
- Accepted April 18, 2002.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|