Abstract
Renal impairment (RI) is a major health concern with a growing prevalence. RI leads to various physiologic changes, in addition to a decrease in glomerular filtration rate, that impact the pharmacokinetics (PK) and, specifically, the renal clearance (CLR) of compounds, including alterations of drug transporter (DT)/drug-metabolizing enzyme expression and activity, as well as protein binding. The objectives of this study were to use a physiologically based pharmacokinetic modeling platform to 1) assess the impact of alterations in DT expression, toxin-drug interactions (TDIs), and free fraction (fu) on PK predictions for the organic cation transporter 2/multidrug and toxin extrusion protein 1 substrate metformin in RI populations; and 2) use available in vitro data to improve predictions of CLR for two actively secreted substrates, metformin and ranitidine. The goal was to identify changes in parameters other than glomerular filtration rate—namely, fu and DT expression/activity—that are consistent with in vitro and clinical data in RI, and predict the importance of these parameters in the PK of metformin and ranitidine in RI patients. Our results demonstrated that including alterations in DT expression and fu, and including TDIs affecting DT activity, as indicated by in vitro data, improved the simulated predictions of CLR and other PK parameters for both metformin and ranitidine in RI. Our simulations suggest that modifications of DT expression/activity and fu are necessary for improved predictions of CLR in RI for compounds that are actively secreted, and that improvement of PK predictions in RI populations for metformin and ranitidine can be obtained by incorporating in vitro data.
Footnotes
- Received November 19, 2017.
- Accepted February 21, 2018.
This work was supported by the National Institutes of Health National Institute on Drug Abuse [Grant R01DA023223]. K.E.F. was supported in part by a fellowship from Bristol-Myers Squibb.
↵This article has supplemental material available at dmd.aspetjournals.org.
- Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|